

Республика Беларусь ООО "МНПП "Электроприбор"

ПРЕОБРАЗОВАТЕЛИ ИЗМЕРИТЕЛЬНЫЕ ЭП

Руководство по эксплуатации 3ЭП.499.850РЭ

СОДЕРЖАНИЕ

Введение	3
1 Описание и работа	3
1.1 Назначение ЭП	3
1.2 Технические характеристики	7
1.3 Комплектность ЭП	20
1.4 Конструкция ЭП	21
1.5 Устройство и работа	23
1.6 Маркировка и пломбирование	25
1.7 Упаковка	27
2 Использование по назначению	28
2.1 Подготовка ЭП к использованию	28
2.2 Использование ЭП	29
3 Поверка ЭП	30
4 Гарантии производителя	30
5 Хранение	31
6 Транспортирование	31
7 Утилизация	32
Приложение А Габаритные и установочные размеры ЭП	33
Приложение Б Схема электрическая подключения ЭП	40
Приложение В Пломбирование ЭП	46

Руководство по эксплуатации (далее – РЭ) предназначено для ознакомления работников эксплуатации с конструкцией, принципом действия, техническими характеристиками, монтажом и обслуживанием преобразователей измерительных $Э\Pi$ (далее – $Э\Pi$).

1 Описание и работа

1.1 Назначение ЭП

Преобразователи измерительные ЭП (далее – ЭП) предназначены для измерения и преобразования электрических параметров переменного и постоянного тока в аналоговые и цифровые сигналы для передачи по интерфейсу RS-485 и отображения на внешних показывающих устройствах.

ЭП предназначены для включения в измерительную цепь непосредственно или через измерительные трансформаторы тока и напряжения (ЭП8554, ЭП8555, ЭП8530) или через преобразователи с аналоговым выходным сигналом или через стандартные шунты постоянного тока (ЭП8556).

ЭП могут применяться для контроля электрических параметров электрических систем и установок, для комплексной автоматизации объектов электроэнергетики, для автоматизированных систем управления технологическими процессами энергоемких объектов различных отраслей промышленности.

1.1.1 Описание ЭП

Преобразователи изготавливаются в следующих модификациях:

- ЭП8542, ЭП8554 для измерения и преобразования силы переменного тока;
- ЭП8543, ЭП8555 для измерения и преобразования напряжения переменного тока;
- ЭП8528 для измерения и преобразования частоты переменного тока с номинальным значением входного напряжения 100 V, 220 V, 230 V, 380 V, 400 V;
- ЭП8530 для измерения и преобразования активной и /или реактивной мощности в трехфазных трехпроводных и четырехпроводных сетях переменного тока;
- ЭП8556 для измерения и преобразования силы постоянного тока или напряжения постоянного тока;
 - ЭП8557 для измерения и преобразования напряжения постоянного тока.

Конструктивно ЭП выполнены в пластмассовом корпусе, предназначены для установки на DIN-рейку (35 mm) или для навесного монтажа на щитах и стойках.

1.1.2 Рабочие условия применения

По устойчивости к климатическим воздействиям преобразователи предназначены для эксплуатации при температуре от минус 40°C до плюс 55 °C и относительной влажности 95 % при температуре 35 °C.

По устойчивости к воздействию атмосферного давления ЭП предназначены для эксплуатации при атмосферном давлении от 84 до 106,7 kPa (от 630 mm Hg до 800 mm Hg).

По устойчивости к механическим воздействиям ЭП относятся к виброустойчивым и вибропрочным, группа N1 по ГОСТ 12997.

Питание ЭП может осуществляться по одному из вариантов:

- от измерительной цепи (ЭП8542, ЭП8543, ЭП8528, ЭП8530 с диапазоном измерения входного напряжения 80 120 V, ЭП8555 с диапазоном измерения входного напряжения 75 125 V);
 - от источника питания (кроме модификаций ЭП8542 и ЭП8543):
- 1) от сети переменного тока напряжением от 198 V до 253 V с номинальным значением 220 (230) V, частотой (50 \pm 0,5) Hz (далее ~220 (230) V, 50 Hz);
- 2) от сети переменного тока напряжением от 85 V до 265 V с номинальным значением 220 (230) V, частотой (50 ± 0.5) Hz или от сети постоянного тока напряжением 105 V до 300 V с номинальным значением 220 (230) V (далее универсальное питание или \approx 220 (230) V);
- 3) от сети постоянного тока напряжением от 37 V до 72 V с номинальным значением 48 V (далее === 48 V);
- 4) от сети постоянного тока напряжением от 19 V до 36 V с номинальным значением 24 V (далее === 24 V);
- 5) от сети постоянного тока напряжением от 10 V до 18 V с номинальным значением 12 V (далее === 12 V);
- 6) от сети постоянного тока напряжением от 4,8 V до 5,6 V с номинальным значением 5 V (далее == 5 V).

ЭП являются взаимозаменяемыми, восстанавливаемыми, ремонтируемыми изделиями.

1.1.3 При заказе ЭП необходимо заполнить бланк заказа, который приведен на сайте www.electropribor.com. или указать условное обозначение ЭП:

При заказе и в документации другой продукции, в которой ЭП могут быть применены, необходимо указать:

ЭПХХХХ
$$-X -X -X -X -X$$
; обозначение ТУ.

где, 1 – модификация ЭП (см. таблицу 1);

- 2 обозначение габаритных размеров корпуса ЭП и способ крепления (только если крепление на DIN рейку 35 mm): «110×120×70», «110×120×125», «125×90×125», «55×81×71», «132×81×71»;
 - 3 количество входов и диапазон измерений входного сигнала (таблица 1);
- **4** количество выходных аналоговых сигналов и вид «по активной и/или реактивной мощности» (только для ЭП8530), диапазон изменений выходных аналоговых сигналов (см. таблицу 1);
 - 5 условное обозначение напряжения источника питания:
- от сети переменного тока напряжением от 187 до 242 V, частотой 50 Hz \ll 220 (230) V, 50 Hz»;
- универсальный источник питания от сети переменного тока напряжением от 80 до 265 V, частотой 50 Hz или от сети постоянного тока напряжением от 105 до 300 V «220 (230) BУ»;
 - от сети постоянного тока напряжением от 37 до 72 V «48В»;
 - от сети постоянного тока напряжением от 19 до 36 V «24В»;
 - от сети постоянного тока напряжением от 10 до 18 V «12В»;
 - от сети постоянного тока напряжением от 4,8 до 5,6 V «5В»;
 - 6 наличие цифрового выхода (интерфейса RS-485 «RS-485»).

Примеры записи при заказе:

1 Модификации ЭП8555 в корпусе с габаритными размерами 110х120х125 mm с креплением на DIN- рейку, с 3 входными сигналами (0 - 125) V, с 3 аналоговыми выходными сигналами (0 - 5) mA, с питанием от сети переменного тока 220 (230) V, частотой 50 Hz:

$$\Im II8555 - 110x120x125$$
, $DIN - 3$ (0 - 125) $V - 3$ (0 - 5) $mA - 220$ (230) V , 50 $Hz - 0$; $TYBY 300080696.850 - 2022$.

2 Модификации ЭП8554 в корпусе с габаритными размерами $132\times81\times71$ mm, диапазоном входного сигнала (0 -150) A, без аналогового выходного сигнала, с универсальным питанием, с интерфейсом RS - 485:

 $9\Pi 8554 - 132x81x71 - 1(0 - 150) A - 0 - 220$ (230) BY - RS - 485; TY BY 300080696.850 - 2022.

3 Модификации ЭП8542 в корпусе с габаритными размерами 55x81x71 mm, с диапазоном входного сигнала (0 - 5) A, аналоговым выходным сигналом (0 - 20) mA:

 $9\Pi 8542 - 55x81x71 - (0 - 5) A - (0 - 20) mA$; TY BY 300080696.850 -2022.

4 Модификации ЭП8543 в корпусе с габаритными размерами 110x120x70 mm, с диапазоном входного сигнала (0 - 125) V, аналоговым выходным сигналом (0 - 5) mA:

 $9\Pi 8543 - 110x120x70 - (0 - 125) V - (0 - 5) mA; TY BY 300080696.850 - 2022.$

5 Модификации ЭП8528 в корпусе с габаритными размерами 110x120x125 mm, с диапазоном входного сигнала 400 V, (49 - 51) Hz, с тремя аналоговым выходными сигналами (0 - 5) V, с питанием от сети постоянного тока 48 V, с интерфейсом RS-485:

 $9\Pi 8528 - 110x120x125 - 400 V (49 - 51) Hz - 3 (0 - 5) V - 48 V - RS - 485; TY BY 300080696.850 - 2022.$

6 Модификации ЭП8556 в корпусе с габаритными размерами 110x120x125 тт с двумя входными сигналами с диапазоном (0-2,5-5) тА, без аналоговых выходов, с питанием от сети переменного тока 220 (230) V, 50 Hz, с интерфейсом RS - 485:

 $\Im \Pi 8556 - 110x120x125 - 2 (0 - 2,5 - 5) mA - 0 - 220 (230) V$, 50 Hz - RS - 485; TY BY 300080696.850 - 2022.

7 Модификации ЭП8557 в корпусе с габаритными размерами 110x120x125 тт с двумя входными сигналами с диапазоном (0-150) V, с двумя аналоговыми выходными сигналами (4-20 mA), с универсальным питанием, с интерфейсом RS-485:

 $9\Pi 8557 - 110x120x125 - 2 (0 - 125) V - 2 (4 - 20) mA - 220 (230) BY - RS - 485;$ TY BY 300080696.850 - 2022.

8 Модификация ЭП8530 в корпусе с габаритными размерами $110 \times 120 \times 125$ mm с креплением на DIN-рейку, с диапазонами входного сигнала по току (0-5) A и по напряжению (0-450) V, с двумя аналоговыми выходными сигналами по активной мощности с диапазоном (4-12-20) mA и реактивной мощности (-5-0-5), универсальным источником питания, интерфейсом RS-485:

 $\Im \Pi 8530 - 110x120x125, DIN - (0-5)A, (0-450)V - P(4-12-20)mA, Q(-5-0-5) - 220 (230)BV - RS-485; TYBY 300080696.850 - 2022.$

1.2 Технические характеристики

- 1.2.1 Преобразователи измерительные серии ЭП соответствуют требованиям технических условий ТУ ВҮ 300080696.850-2022, ГОСТ IEC 60688 2017.
- 1.2.2 Диапазон измерения входных сигналов и диапазон изменения выходных сигналов в зависимости от модификации приведены в таблице 1. Количество входов и выходов, диапазоны входных и выходных сигналов изготавливаются по заказу.

Таблица 1

Модифи- кации	Коли-чество	Диапазо	он измерений	входного с	сигнала	Коли-чество	Диапазон изм ходного	
ЭП	вхо-	сила переменного (постоянного) тока	напряжение перемен- ного (посто- янного) тока	частота перемен- ного тока	коэффици- ент мощно- сти cos φ (sin φ)	анало- говых выхо- дов	цифровой сигнал*	аналоговый сигнал*
ЭП8542	1	0-0,5 A; 0-1,0 A; 0-2,5 A; 0-5,0 A	-	-	-	1	-	0 – 5 mA; 0 – 20 mA
ЭП8543	1	-	0-125 V; 0-250 V; 0-400 V; 0-500 V	-	-	1	-	0 – 5 mA
ЭП8528	1	-	-	45 – 55 Hz; 47 – 52 Hz 48 – 52 Hz; 49 – 51 Hz;	-	0-3	45,00 – 55,00 Hz; 47,00 – 52,00 Hz 48,00 – 52,00 Hz; 49,00 – 51,00 Hz	0-5 mA; 0-20 mA; 4-20 mA; 0-5 V; 0-10 V
ЭП8554*	1-3	0-0,5 A; 0-1,0 A; 0-2,5 A; 0-5,0 A; 0-20,0 A; 0-30,0 A; 0-40,0 A; 0-50,0 A; 0-60,0 A; 0-75,0 A; 0-80,0 A; 0-100,0 A; 0-150,0 A	-	-	-	0-3	0 – I	0-5 mA; 0-20 mA; 4-20 mA; 0-5 V; 0-10 V

	Коли- чество	чество ходного		Диапазон измерений входного сигнала			изменений вы-	
ПЄ иир	входов	сила переменного (постоянного) тока	напряжение переменного (постоянного) тока	ча- стота пере- мен- ного тока	коэффи- циент мощно- сти соѕ ф (sin ф)	анало- говых выхо- дов	цифровой сигнал*	аналоговый сигнал*
ЭП8555	1-3	-	0-125 V; 75-125 V; 0-250 V; 0-400 V; 0-500 V; 0-600 V	-	-	0-3	0 – U	0-5 mA; 0-20 mA; 4-20 mA; 0-5 V; 0-10 V
		0 – 5 mA; 0 – 20 mA; 4 – 20 mA	0 – 50 mV; 0 – 60 mV; 0 – 75 mV; 0 – 100 mV; 0 – 150 mV; 0 – 300 mV	-	-	0-2	0 – I	$\begin{array}{c} 0-5 \text{ mA;} \\ 0-20 \text{ mA;} \\ 4-20 \text{ mA;} \\ 0-5 \text{ V;} \\ 0-10 \text{ V} \end{array}$
ЭП8556	1-2	-5 - 0 - 5 mA; 0 - 2,5 - 5 mA; 0 - 10 - 20 mA; 4 - 12 - 20 mA	-50 - 0 - 50 mV; -60 - 0 - 60 mV; -75 - 0 - 75 mV; -100 - 0 - 100 mV; -150 - 0 - 150 mV; -300 - 0 - 300 mV	-	-	0-2	-I - 0 - I	-5 - 0 - 5 mA; 0 - 2,5 - 5 mA; 0 - 10 - 20 mA; 4 - 12 - 20 mA; -5 - 0 - 5 V; -10 - 0 - 10 V
ЭП8557	1-2	-	$\begin{array}{c} 0-1 \text{ V};\\ 0-5 \text{ V};\\ 0-10 \text{ V};\\ 0-60 \text{ V};\\ 0-100 \text{ V};\\ 0-150 \text{ V};\\ 0-250 \text{ V};\\ 0-500 \text{ V};\\ 0-1000 \text{ V} \end{array}$	-	-	0-2	0 – U	0-5 mA; 0-20 mA; 4-20 mA; 0-5 V; 0-10 V
	1-2	-	-1 - 0 - 1 V; -5 - 0 - 5 V; -10 - 0 - 10 V; -60 - 0 - 60 V; -100 - 0 - 100 V; -150 - 0 - 150 V; -250 - 0 - 250 V; -500 - 0 - 500 V; -1000 - 0 - 1000 V	-	-	0-2	-U - 0 - U	-5 - 0 - 5 mA; 0 - 2,5 - 5 mA; 0 - 10 - 20 mA; 4 - 12 - 20 mA; -5 - 0 - 5 V; -10 - 0 - 10 V

Модифи- кации	Коли- чество	Диапазон измерений входного сигнала			Коли-чество	Диапазон измене сигн		
ЭП	входов	сила переменного (постоян-	напряжение переменного (постоянного) тока	частота пере- мен- ного	коэффици- ент мощно- сти соs φ (sin	анало-	цифровой сиг- нал*	аналоговый сигнал**
		ного) тока	iona	тока	φ)	дов		
			линейное 80 – 120 V (фазное 46,2 – 69,3 V);		0-1	0-2	0 – P; 0 – Q	0 – 5 mA; 0 – 20 mA; 4 – 20 mA
ЭП8530	1	0 – 0,5 A; 0 – 1,0 A; 0 – 2,5 A; 0 – 5,0 A	0 - 69,3 V);	-	-1 - 0 - 1	0-2	-1 O 1,	-5 - 0 - 5 mA; 0 - 2,5 - 5 mA; 0 - 10 - 20 mA; 4 - 12 - 20 mA

- * ЭП8554 с диапазоном измерения входного сигнала св. 5 А изготавливаются только одноканальными.
- ** Возможно изготовление приборов с разными диапазонами изменений аналоговых выходов. Примечания
- $1\ I$ значение измеряемой силы тока, U значение измеряемого напряжения; P значение измеряемой активной мощности, Q значение измеряемой реактивной мощности.
- 2 I, U, P, Q значение измеряемого сигнала на входе преобразователей с учетом коэффициента передачи измерительных трансформаторов, шунтов на входе, соответствующие номинальным значениям измеряемого сигнала (см. таблицу 2). Числовое значение может быть в пределах от 1,000 до 7999 с разделительной точкой после любого значащего разряда.

1.2.3 Номинальные значения входных и нормирующие значения выходных сигналов приведены в таблице 2.

Таблица 2

Моди-	Номинальное значение вход-	Нормирующее значение выходного сигнала			
фикация	ного сигнала	цифрового	аналогового		
ЭП					
ЭП8542	0,5 A; 1,0 A; 2,5 A; 5,0 A;	-	5 mA для диапазона $0 - 5 mA$;		
			20 mA для диапазона 0 – 20 mA		
ЭП8543	125 V; 250 V; 400 V; 500 V	-	5 mA		
ЭП8528	50 Hz	50 Hz	5 mA для диапазона $0 - 5 mA$;		
			$20 \ \text{mA}$ для диапазонов: $0-20 \ \text{mA}, \ 4-20 \ \text{mA};$		
			$5~{ m V}$ для диапазона $0-5~{ m V};$ $10~{ m V}$ для диапазона $0-10~{ m V}$		

Моди-	Номинальное значение вход-	Нормирующее значение выходного сигнала				
фикация ЭП	ного сигнала	цифрового	аналогового			
ЭП8554	0,5 A; 1,0 A; 2,5 A; 5,0 A; 20,0 A; 30,0 A; 40,0 A; 50,0 A; 60,0 A; 75,0 A; 80,0 A; 100,0 A; 150,0 A	$\mathbf{I} = \mathbf{K}_{\text{\tiny T.T}} \cdot \mathbf{I}_{\text{\tiny HOM.}}$	5 mA для диапазона 0 – 5 mA; 20 mA для диапазонов: 0 – 20 mA, 4 – 20 mA;			
			5 V для диапазона 0 – 5 V; 10 V для диапазона 0 – 10 V			
ЭП8555	125 V; 250 V; 400 V; 500 V; 600 V	$\mathbf{U} = \mathbf{K}_{\text{\tiny T.H}} \cdot \mathbf{U}_{\text{\tiny HOM.}}$	5 mA для диапазона 0 – 5 mA; 20 mA для диапазонов: 0 – 20 mA, 4 – 20 mA; 5 V для диапазона 0 – 5 V; 10 V для диапазона 0 – 10 V			
ЭП8556	5 mA для диапазонов: 0 – 5 mA; -5 – 0 – 5 mA; 0 – 2,5 – 5 mA; 20 mA для диапазонов: 0 – 10 – 20 mA;	$I = K \cdot I_{\text{hom.}}$	5 mA для диапазонов: $-5-0-5$ mA; $0-2,5-5$ mA; $0-5$ mA; $0-5$ mA; $0-5$ mA; $0-5$ mA; $0-5$ mA; $0-10-20$ mA;			
	4-12-20 mA; 0-20 mA; 4-20 mA; 50 mV; 60 mV; 75 mV; 100 mV; 150 mV; 300 mV		0-20 mA; 0-20 mA; 4-20 mA; 5 V для диапазонов: -5-0-5 V; 0-5 V; 10 V для диапазонов -10-0-10 V; 0-10 V			
ЭП8557	1 V; 5 V; 10 V; 60 V; 100 V; 150 V; 250 V; 500 V; 1000 V	$\mathbf{U}=\mathbf{U}_{ ext{hom.}}$	5 mA для диапазонов:			

Моди-	Номинальное значение входного	Нормирующее значение выходн	ого сигнала
фикация	сигнала	цифрового	аналогового
ЭП			
ЭП8530	$0.5 \text{ A}, 100 (57.74) \text{ V}, \cos \varphi = 1,$	для трехпроводных сетей	5 mA для диа-
	$\sin \varphi = 1$, P=86,6 W, Q=86,6 var;		пазонов:
	$1.0 \text{ A}, 100 (57.74) \text{ V}, \cos \varphi = 1,$	$P = \sqrt{3} \cdot K_{\text{t.t.}} \cdot I_{\text{hom.}} \cdot K_{\text{t.h}} \cdot U_{\text{jl.hom.}} \cdot \cos \phi_{\text{hom.}}$	-5 - 0 - 5 mA;
	$\sin \varphi = 1$, P=173,2 W, Q=173,2 var;	Thom:	0 - 2.5 - 5 mA;
	$2.5 \text{ A}, 100 (57.74) \text{ V}, \cos \varphi = 1,$	$Q = \sqrt{3} \cdot K_{\text{T.T}} \cdot I_{\text{HOM.}} \cdot K_{\text{T.H}} \cdot U_{\text{J.HOM.}} \cdot \sin \phi_{\text{HOM.}}$	0 - 5 mA;
	sin φ =1, P=433,0 W, Q=433,0 var;	у — у з тет.т тном. тет.н сл.ном. зни у ном.	20 mA для диапа-
	$5.0 \text{ A}, 100 (57.74) \text{ V}, \cos \varphi = 1,$		30НОВ:
	sin φ =1, P=866,0 W, Q=866,0 var;	для четырехпроводных сетей	0-10-20 mA;
		для тетыромпроводных сетен	4-12-20 mA;
	$0.5 \text{ A}, 380 (219.4) \text{ V}, \cos \varphi = 1,$	$P = 3 \cdot K_{\text{\tiny T.T}} \cdot I_{\text{\tiny HOM.}} \cdot K_{\text{\tiny T.H}} \cdot U_{\phi.\text{\tiny HOM.}} \cdot \cos \phi_{\text{\tiny HOM.}}$	0 - 20 mA;
	sin φ =1, P=329,1 W, Q=329,1 var;	To rein Inom. rein Sp.nom. Ses y nom.	4 - 20 mA;
	1,0 A, 380 (219,4) V, $\cos \varphi = 1$,	$Q = 3 \cdot K_{\text{T.T}} \cdot I_{\text{HOM.}} \cdot K_{\text{T.H}} \cdot U_{\phi,\text{HOM.}} \cdot \sin \phi_{\text{HOM.}}$	
	sin φ =1, P=658,2 W, Q=658,2 var;	у тел. том. тел. оф.ном. этт у ном.	
	$2,5 \text{ A}, 380 (219,4) \text{ V}, \cos \varphi = 1,$		
	$\sin \varphi = 1$, P=1645,4 W, Q=1645,4 var;		
	$5.0 \text{ A}, 380 (219.4) \text{ V}, \cos \varphi = 1,$		
	$\sin \varphi = 1$, P=3290,8 W, Q=3290,8 var;		
	$0.5 \text{ A}, 400 (230.9) \text{ V}, \cos \varphi = 1,$		
	sin φ =1, P=346,4 W,Q=346,4 var;		
	$1,0 \text{ A}, 400 (230,9) \text{ V}, \cos \varphi = 1,$		
	sin φ =1, P=692,8 W, Q=692,8 var;		
	$2.5 \text{ A}, 400 (230.9) \text{ V}, \cos \varphi = 1,$		
	sin φ =1, P=1732,0 W, Q=1732,0 var;		
	5,0 A, 400 (230,9) V, $\cos \varphi = 1$,		
	sin φ =1, P=3464,0 W, Q=3464,0 var		

Примечания

- $1~I_{\text{ном}}$ номинальное значение тока на входе $\Im\Pi$.
- $2~U_{\text{ном.}}$ номинальное значение напряжения на входе $\Im\Pi$.
- $3~U_{\scriptscriptstyle{\Pi.\text{HOM.}}}$ номинальное значение линейного (межфазного) напряжения на входе ЭП8530.
- $4~U_{\varphi.\text{ном.}}$ номинальное значение фазного напряжения на входе ЭП8530.
- $5~{
 m K}_{{\scriptscriptstyle {
 m T}}{
 m T}}-$ коэффициент трансформации измерительных трансформаторов тока.
- 6 К_{т.н} коэффициент трансформации измерительных трансформаторов напряжения.
- 7 К коэффициент преобразования первичных преобразователей или шунта.
- 1.2.4 Мощность, потребляемая ЭП от измерительной цепи, при номинальных значениях преобразуемых входных сигналов, не более значений, указанных в таблице 3.

Таблица 3

Модификации	Мощность, потребляемая от измерительной цепи, V·A			
ЭП	1			
ЭП8542	1,0 V·A			
ЭП8543	1,5 V·A (для U _{ном.} = 125 V)			
	2,5 V·A (для U _{ном.} = 250 V)			
	$4.0 \text{ V-A } (для \text{ U}_{\text{ном.}} = 400 \text{ V})$			
	$5.0 \text{ V-A } (для \text{ U}_{\text{ном.}} = 500 \text{ V})$			
ЭП8528	1,0 V·A (с дополнительным источником питания);			
	6,0 V·A (с питанием от измерительной цепи)			
ЭП8554*	0,5 V·A (для I _{ном.} = 0,5 A; 1,0 A; 2,5 A; 5,0 A)			
ЭП8555*	1,0 V·A (с дополнительным источником питания);			
	6,0 V·A (с питанием от измерительной цепи)			
ЭП8556*	0,005 W			
ЭП8557*	$0,005~\mathrm{W}$ (для $\mathrm{U}_{\mathrm{HOM.}}=1~\mathrm{V})$			
	$0.01~{ m W}$ (для ${ m U}_{ m hom.}=5~{ m V}$)			
	$0.05~{ m W}~({ m для}~{ m U}_{{ m hom.}}=10~{ m V})$			
	$0.1~{ m W}~({ m для}~{ m U}_{ m hom.}=60~{ m V})$			
	$0.1~{ m W}~({ m для}~{ m U}_{ m Hom.}=100~{ m V})$			
	$0.1 \text{ W} \text{ (для U}_{\text{ном.}} = 150 \text{ V})$			
	0.1 W (для $U_{\text{ном.}} = 250 \text{ V}$)			
	0,15 W (для U _{ном.} = 500 V)			
ЭП8530	0,3 W (для U _{ном.} = 1000 V)			
3118330	0,2 V·A (I _A , I _B , I _C)			
	для трехпроводных сетей:			
	0.5 V-A (U _{AB} , U _{BC} , U _{AC}) – для ЭП с дополнительным источником питания			
	$0.5~{ m V}\cdot{ m A}~({ m U}_{ m AB},{ m U}_{ m BC})$ и $5.0~{ m V}\cdot{ m A}~({ m U}_{ m AC})$ – для ЭП с питанием от измерительной			
	цепи; для четырехпроводных сетей:			
	для четырехпроводных сетеи. $0.5 \text{ V-A (U}_{AN}, \text{U}_{BN}, \text{U}_{CN})$ – для ЭП с дополнительным источником питания			
	$5.0 \text{ V-A (U}_{AC})$ – для 3Π с питанием от измерительной цепи			
* Monnacc				
* Мощность определяется для каждого канала				

1.2.5 Мощность, потребляемая ЭП от цепи питания при номинальных значениях преобразуемых входных сигналов, не более значений, указанных в таблице 4.

Таблица 4

Модификации ЭП	Мощность, потребляемая от сети питания				
	переменного тока, V·A	постоянного тока, W			
ЭП8554	6,0*; 4,0	4,0*; 3,0			
ЭП8555	6,0*; 4,0	4,0*; 3,0			
ЭП8528	3,0	3,0			
ЭП8556	5,5	4,0			
ЭП8557	5,5	4,0			
ЭП8530	5,0; 7,0**	4,0			
* Для многоканальных ЭП					
** Лля ЭП с универсальным питанием					

- 1.2.6 Габаритные размеры ЭП не более:
- а) для ЭП8542, ЭП8543 55х81х71 mm, 110х120х70 mm или 110х120х81 mm (с креплением на DIN рейку);
- б) для ЭП8528, ЭП8555:
- одноканальные $Э\Pi 55x81x71$ mm, 110x120x70 mm или 110x120x81 mm (с креплением на DIN рейку) или 110x120x125 mm или 110x120x136 mm (с креплением на DIN рейку);
- трехканальные ЭП 125х90х125 mm, 110х120х125 mm или 110х120х136 mm (с креплением на DIN рейку);
- в) для ЭП8554:
- одноканальные с диапазоном входного сигнала до 5~A-55x81x71~mm, 110x120x70~mm или 110x120x81~mm (с креплением на DIN рейку),
 - одноканальные с диапазоном входного сигнала свыше 5 A -132x81x71mm;
- трехканальные 125х90х125 mm, 110х120х125 mm или 110х120х136 mm (с креплением на DIN рейку);
- г) для ЭП8556, ЭП8557 110х120х125 mm или 110х120х136 mm (с креплением на DIN рейку);
- д) для ЭП8530 125х90х125 mm, 110х120х125 mm или 110х120х136 mm (с креплением на DIN рейку).
 - 1.2.7 Macca ЭП не более 0,8 kg.
- 1.2.8 Пределы допускаемой основной приведенной погрешности ЭП от нормирующего значения выходного сигнала:
 - а) ± 0.05 % для ЭП8528;
 - б) \pm 0,5 % для ЭП8554, ЭП8555, ЭП8556, ЭП8557;
 - в) \pm 1,0 % для ЭП8542, ЭП8543;
 - г) \pm 0,2 % или \pm 0,5 % для ЭП8530.
 - 1.2.9 ЭП соответствуют требованию 1.2.8:
- а) при изменении сопротивления нагрузки аналогового выхода в диапазоне, указанном в таблице 5;
- б) при изменении частоты входного сигнала для модификаций ЭП8554, ЭП8555, ЭП8542, ЭП8543, ЭП8530 в диапазоне от 45,00 до 55,00 Hz;
 - в) при изменении напряжения источника питания:

- от сети переменного тока напряжением от 198 V до 25V B с номинальным значением 220 (230) V, частотой (50 \pm 0,5) Hz;
- от сети переменного тока напряжением от 80~V до 265~V с номинальным значением 220~(230)~V, частотой (50 ± 0.5) Нz или от сети постоянного тока напряжением 105~V до 300~V с номинальным значением 220~(230)~V;
- от сети постоянного тока напряжением от 37 V до 72 V с номинальным значением 48 V;
- от сети постоянного тока напряжением от 19 V до 36 V с номинальным значением 24 V;
- от сети постоянного тока напряжением от 9 V до 18 V с номинальным значением 12 V;
- от сети постоянного тока напряжением от 4,8 V до 5,6 V с номинальным значением 5 V;
- г) при изменении напряжения измерительной цепи для модификации ЭП8530 от 0 до 1,2 $U_{\text{ном}}$ или от 0,8 $U_{\text{ном}}$ до 1,2 $U_{\text{ном}}$;
- д) при изменении коэффициента мощности входного сигнала от 0,5 до 1,0 для модификации ЭП8530;
- е) при воздействии неравномерной нагрузке фаз, когда ток в одной фазе принимает значение $0.5~I_{\mbox{\tiny Hom}}$ для модификации $3\Pi8530$.
- 1.2.10 Пульсация выходного аналогового сигнала ЭП на максимальной нагрузке не более значений указанных в таблице 6.
- 1.2.11 Время отклика при скачкообразном изменении входного сигнала от 0 до 90 % номинального значения, указанно в таблице 5.

Таблина 5

Таолица 5	п	п	D	П
Модифика-	Диапазон изменений	Диапазон изменений со-	Время от-	Пульсация
ции ЭП	выходного аналого-	противления нагрузки	клика, s	выходного
	вого сигнала	аналогового выхода		аналогового
DH0542	0.7.4	0. 2010	0.7	сигнала, мV
ЭП8542	0-5 mA	$0-2.0~\mathrm{k}\Omega$	0,5	60
	0-20 mA	$0-0.5 \text{ k}\Omega$		
ЭП8543	0 – 5 mA	$1,1-1,3~\mathrm{k}\Omega$	0,5	39
ЭП8528,	0 – 5 mA	$0-3.0~\mathrm{k}\Omega$	0,5	90
ЭП8554,	0 - 20 mA;	$0-0.5~\mathrm{k}\Omega$	0,5	60
ЭП8555	4-20 mA			
	0 – 5 V	$1.0 \text{ k}\Omega - 1.0 \text{ M}\Omega$	0,5	30
	0 – 10 V	$2.0 \text{ k}\Omega - 1.0 \text{ M}\Omega$	0,5	60
ЭП8556,	0 – 5 mA;	$0-3.0~\mathrm{k}\Omega$	0,5	90
ЭП8557	-5 - 0 - 5 mA; 0 - 2.5 - 5 mA		0,005	150
	0-2.5-3 mA 0-20 mA:	$0-0.5 \text{ k}\Omega$	0,5	60
	4-20 mA;		,	
	4-12-20 mA;		0,005	100
	0 - 10 - 20 mA			
	0 – 5 V;	$1.0 \text{ k}\Omega - 1.0 \text{ M}\Omega$	0,5	30
	-5 - 0 - 5 V	1,0 1122	3,5	
	0 – 10 V;	$2.0 \text{ k}\Omega - 1.0 \text{ M}\Omega$	0,5	60
	-10 – 0 – 10 V			
ЭП8530	0 - 5 mA;	$0-3.0 \text{ k}\Omega$	0,5	90
	-5 - 0 - 5 mA;			
	0 - 2.5 - 5 mA			
	0 – 20 mA:	$0-0.5 \text{ k}\Omega$	0,5	60
	4 - 20 mA;			
	4-12-20 mA;			
	0 - 10 - 20 mA			

1.2.12 Время установления рабочего режима после включения напряжения питания не более 30 min.

Время непрерывной работы ЭП не ограничено.

- $1.2.13~\rm 3\Pi$ устойчивы к воздействию температуры окружающего воздуха от минус 40 °C до плюс 55 °C. Пределы допускаемых дополнительных приведенных погрешностей (далее дополнительных погрешностей), %, от нормирующего значения выходного сигнала при изменении температуры окружающего воздуха от (20 ± 1) °C до минус 40 °C и плюс 55 °C на каждые 10 °C:
 - а) \pm 0,4 % для ЭП8554, ЭП8555, ЭП8556, ЭП8557, ЭП8530 (с кл. точности 0,5);
 - б) ± 0.5 % для ЭП8542, ЭП8543;

- в) \pm 0,2 % для ЭП8530 (с кл. точности 0,2);
- Γ) ± 0,05 % для ЭП8528.
- $1.2.14~ \Im\Pi$ устойчивы к воздействию относительной влажности окружающего воздуха (95 \pm 3) % при температуре 35 °C.

Пределы допускаемых дополнительных погрешностей, %, от нормирующего значения выходного сигнала:

- а) \pm 0,9 % для ЭП8554, ЭП8555, ЭП8530 (с кл. точности 0,5);
- б) $\pm 0.4\%$ для ЭП8530 (с кл. точности 0,2);
- в) \pm 1,0 % для ЭП8542, ЭП8543, ЭП8556, ЭП8557;
- Γ) \pm 0,1 % для ЭП8528.
- 1.2.15 ЭП устойчивы к воздействию внешнего однородного магнитного поля переменного тока частотой 50 Hz, с магнитной индукцией 0,5 mT (400 A/m) при самом неблагоприятном направлении и фазе магнитного поля.

Пределы допускаемых дополнительных погрешностей, %, от нормирующего значения выходного сигнала:

- а) \pm 0,5 % для ЭП8542, ЭП8543, ЭП8554, ЭП8555, ЭП8556, ЭП8557, ЭП8530 (с кл. точности 0,5);
 - б) ± 0.4 % для ЭП8530 (с кл. точности 0,2);
 - в) $\pm 0.1 \%$ для ЭП8528.
- 1.2.16 ЭП устойчивы к искажению формы кривой входного сигнала под влиянием 3 гармоники с коэффициентом искажений 0,2 %.

Пределы допускаемых дополнительных погрешностей, %, от нормирующего значения выходного сигнал:

- а) \pm 0,5 % для ЭП8554, ЭП8555;
- б) ± 2.0 % для ЭП8542, ЭП8543.
- 1.2.17 ЭП8556, ЭП8557 устойчивы к воздействию переменной составляющей входного сигнала амплитудой до 15~% конечного значения диапазона измерений входного сигнала частотой $50-400~\mathrm{Hz}$.

Пределы допускаемой дополнительной погрешности, %, от нормирующего значения выходного сигнала \pm 0,5 %. При этом пульсация выходного аналогового сигнала не превышает значений, указанных в таблице 6.

- 1.2.18 ЭП выдерживают двухчасовую перегрузку входным сигналом равным 120 % от конечного значения диапазона измерений.
- 1.2.19 ЭП выдерживают кратковременные перегрузки входным сигналом в соответствии с таблицей 6 при измерении напряжения и с таблицей 7 при измерении тока.

Напряжение выходного аналогового сигнала при перегрузках не превышает 30 V на максимальной нагрузке.

Таблица 6

Кратность входного сигнала	Число перегрузок	Длительность каждой перегрузки, s	Интервал между перегрузками, s
2,0 (при U _{вх} до 400 V включ.)	10	1,0	10
1,5 (при U _{вх} св. 400 V до 600 V включ.)	10	1,0	10

Таблица 7

Кратность входного	Число	Длительность	Интервал между
сигнала	перегрузок	каждой перегрузки, s	перегрузками, s
20 (при Івх до 5 А включ.)	5	1	300
40 (при Івх до 5 А включ.)	1	1	-
2 (при Івх св.5 А до 150 А включ.)	5	1	300

1.2.20 ЭП выдерживают без повреждений разрыв цепи нагрузки аналоговых выходов в течение 4 h при номинальном значении входных сигналов.

Величина напряжения на разомкнутых зажимах аналогового выхода не превышает 30 V.

- 1.2.21 При заземлении любого выходного зажима аналоговых выходов ЭП соответствуют требованиям 1.2.8.
- 1.2.22 ЭП устойчивы и прочны к воздействию синусоидальной вибрации в диапазоне частот от 10 до 55 Hz при амплитуде смещения 0,15 mm.
 - 1.2.23 Степень защиты оболочки по ГОСТ 14254-2015 для ЭП:
 - IP20 для клемм подключения;
 - ІР40 для остальных частей.

- 1.2.24 ЭП в транспортной таре выдерживают без повреждений:
- воздействие температуры от минус 50 °C до плюс 50 °C;
- воздействие относительной влажности (95 ± 3) % при температуре 35 °C.
- 1.2.25 ЭП в транспортной таре выдерживают без повреждений в направлении, обозначенном манипуляционным знаком по ГОСТ 14192-96 "Верх", воздействие вибрации в диапазоне частот от 10 до 55 Hz при амплитуде смещения 0,15 mm.
- 1.2.26 ЭП по электромагнитной совместимости соответствуют требованиям ТР ТС 020/2011, ГОСТ 30969-2002 для оборудования класса А.
- 1.2.27 ЭП по безопасности соответствуют требованиям ТР ТС 004/2011, ГОСТ 12.2.007.0-75, ГОСТ IEC 61010-1-2014, ГОСТ IEC 61010-2-030-2013.
- 1.2.28 ЭП по способу защиты человека от поражения электрическим током имеет усиленную изоляцию и соответствуют классу II по ГОСТ 12.2.007.0-75.

ЭП с входным сигналом до 300 V включительно соответствуют степени загрязнения 2 и категории перенапряжения II по ГОСТ IEC 61010-1-2014, категории измерения III по ГОСТ IEC 61010-2-030-2013.

ЭП с входным сигналом свыше 300 V до 600 V включительно соответствуют степени загрязнения 2 и категории перенапряжения II по ГОСТ IEC 61010-1-2014, категории измерения II по ГОСТ IEC 61010-2-030-2013.

ЭП с входным сигналом свыше 600 V до 1000 V включительно соответствуют степени загрязнения 2 и категории перенапряжения II по ГОСТ IEC 61010-1-2014, категории измерения I по ГОСТ IEC 61010-2-030-2013.

Входные токовые цепи ЭП рассчитаны на номинальное рабочее напряжение не более 300 V.

Зазоры различных цепей ЭП между собой и по отношению к корпусу в зависимости от напряжения в этих цепях не менее значений, указанных в таблице 9.

Электрическая изоляция различных цепей ЭП между собой и по отношению к корпусу выдерживает в течение 1 min действие испытательного напряжения переменного тока среднеквадратичного значения частотой 50 Hz, величина которого указана в таблицах 8 и 9.

Таблица 8

Цепи ЭП	Испытательное напряжение, V (Зазоры, mm)				
	ЭП8528	ЭП8542	ЭП8543	ЭП8530	
корпус - входы	1390 (1,5)*	2210 (3,0)		1390 (1,5)*	
	2210 (3,0) **		2210 (3,0) **	2210 (3,0) **	
	3510 (5,9) ***		3510 (5,9) ***	3510 (5,9) ***	
корпус - выходы	710 (0,3)				
корпус – цепь питания	2210 (3,0)	-	-	2210 (3,0)	
	[1060 (1,0)]			[1060 (1,0)]	
входы – цепь питания	1390 (1,5)*	-	-	1390 (1,5)*	
	2210 (3,0) **			2210 (3,0) **	
	3510 (5,9) ***			3510 (5,9) ***	
выходы – цепь питания	2210 (3,0)	-	-	2210 (3,0)	
	[1060 (1,0)]			[1060 (1,0)]	
входы — выходы	1390 (1,5)*	2210 (3,0)	1390 (1,5)*	1390 (1,5)*	
	2210 (3,0) **		2210 (3,0) **	2210 (3,0) **	
	3510 (5,9) ***		3510 (5,9) ***	3510 (5,9) ***	
входные цепи тока – входные	-	-	-	2210 (3,0)	
цепи напряжения					
входные цепи тока между собой	_	-	-	2210 (3,0)	
выходы – между собой	710 (0,3)				

^{*}При фазном напряжении переменного тока до 150 V включительно.

**При фазном напряжении переменного тока свыше 150 V до 300 V включительно.

***При фазном напряжении переменного тока свыше 300 V.

Примечание — В квадратных скобках указано значение испытательного напряжения для ЭП с питанием от сети постоянного тока с номинальным значением напряжения до 100 V.

Таблица 9

Цепи ЭП	Испытательное напряжение, V (Зазоры, mm)			
	ЭП8554	ЭП8555	ЭП8556	ЭП8557
корпус - входы	2210 (3,0)	1390 (1,5)*	2210 (3,0)	1390 (1,5)*
		2210 (3,0) **		2210 (3,0) **
		3510 (5,9) ***		3510 (5,9) ***
корпус - выходы	710 (0,3)			
корпус – цепь питания	2210 (3,0) [1060 (1,0)]			
входы – цепь питания	2210 (3,0)	1390 (1,5)*	2210 (3,0)	1390 (1,5)*
		2210 (3,0) **		2210 (3,0) **
		3510 (5,9) ***		3510 (5,9) ***
выходы – цепь питания	2210 (3,0)	2210 (3,0)	2210 (3,0)	2210 (3,0)
	[1060 (1,0)]	[1060 (1,0)]	[1060 (1,0)]	[1060 (1,0)]
входы — выходы	2210 (3,0)	1390 (1,5)*	2210 (3,0)	1390 (1,5)*
		2210 (3,0) **		2210 (3,0) **
		3510 (5,9) ***		3510 (5,9) ***
входные цепи напряжения	-	1390 (1,5)*	-	1390 (1,5)*
между собой		2210 (3,0) **		2210 (3,0) **
		3510 (5,9) ***		3510 (5,9) ***
входные цепи тока между собой	2210 (3,0)	-	2210 (3,0)	-
выходы – между собой	710 (0,3)			

^{*} При фазном напряжении переменного тока до 150 V включительно.

Примечание – В квадратных скобках указано значение испытательного напряжения для ЭП с питанием от сети постоянного тока с номинальным значением напряжения до 100 V.

- 1.2.27.1 Средняя наработка на отказ ЭП с учетом технического обслуживания не менее 50000 h.
- 1.2.28 Среднее время восстановления работоспособного состояния ЭП не более $2\ h.$
 - 1.2.29. Средний срок службы ЭП не менее 15 лет.
 - 1.3 Комплектность
 - 1.3.1 Комплект поставки ЭП соответствует указанному в таблице 10.

Таблица 10

Обозначение	Наименование	Количество
3ЭП.499.850.ХХ	Преобразователь измерительный ЭПХХХХ	1
3ЭП.499.850.ХХПС	Паспорт	1
3ЭП.499.850РЭ	Руководство по эксплуатации	Количество по заказу
МРБ МП. 3215 - 2022	Методика поверки	Количество по заказу

^{**} При фазном напряжении переменного тока свыше 150 V до 300 V включительно.

^{***} При фазном напряжении переменного тока свыше 300 V.

1.4 Конструкция ЭП

ЭП конструктивно состоят из следующих основных узлов:

- основания;
- крышки корпуса;
- крышки клеммной колодки (в зависимости от габаритных размеров ЭП);
- печатных плат с элементами схемы.

Основание, крышка корпуса, крышка клеммной колодки выполнены из изоляционного материала.

Внешние подключения выполняются при помощи клеммной колодки ЭП.

Для ЭП с габаритными размерами: 110x120x70 mm; 110x120x81 mm; 110x120x125 mm; 110x120x136 mm; 55x81x71 mm; 132x81x71 mm каждый зажим клеммной колодки обеспечивает подключение медных или алюминиевых проводов, сечением от 1 до 6 mm². Зажимы защищены от случайного прикасания крышкой клеммной колодки.

Для ЭП с габаритными размерами $125 \times 90 \times 125$ mm каждый зажим клеммной колодки обеспечивает подключение медных или алюминиевых проводов сечением от 0.5 до 2.5 mm².

Крышка корпуса ЭП с габаритными размерами 110x120x70 mm; 110x120x81 mm; 110x120x125 mm; 110x120x136 mm; 125x90x125 mm крепится к основанию при помощи двух саморезов.

Крышка корпуса ЭП с габаритными размерами 55х81х71 mm; 132х81х71 mm крепится к основанию при помощи двух защелок.

1.5 Устройство и работа

Принцип действия ЭП основан на измерении и преобразовании аналоговых входных сигналов в выходной аналоговый сигнал и в выходной цифровой сигнал (кроме ЭП8542, ЭП8543).

Функция преобразования измеряемого сигнала в выходной аналоговый сигнал для ЭП8554, ЭП8555, ЭП8556, ЭП8557, ЭП8542, ЭП8543, ЭП8530 имеет следующий вид:

$$I_{\text{RMY i}} = K \cdot A_{\text{RY i}} + I_{\text{RMY H}}, \tag{1}$$

где $I_{\text{вых. i}}$ – значение выходного аналогового сигнала в проверяемой точке, mA или V;

А_{вх. і} – значение входного сигнала в проверяемой точке, mA, A, mV, V;

 $I_{\mbox{\tiny Bых. }\mbox{\tiny H}}$ — начальное значение диапазона изменений выходного аналогового сигнала, mA, V;

К – коэффициент преобразования, определяемый по формуле (2).

$$K = \frac{I_{\text{BbIX.K}} - I_{\text{BbIX.H}}}{A_{\text{BX K}}},$$
 (2)

где $I_{\text{вых. }\kappa}$ — конечное значение диапазона изменений выходного аналогового сигнала, mA, V;

 $A_{\mbox{\tiny BX. K}}$ — конечное значение диапазона измерений входного сигнала, mA, A или mV, V.

Функция преобразования измеряемого сигнала в выходной аналоговый сигнал для ЭП8528 имеет следующий вид:

$$I_{\text{\tiny BbIX}} = (F_{\text{\tiny BX}} - F_{\text{\tiny H}}) \cdot K + I_{\text{\tiny H}} \tag{3}$$

где $I_{\text{вых}}$ – выходной аналоговый сигнал, mA;

 $F_{\text{вх}}$ – значение измеряемой частоты для проверяемой точки, Hz;

F_н – нижнее значение диапазона измеряемой частоты, Hz;

 $I_{\mbox{\tiny H}}-$ нижнее значение диапазона изменений выходного аналогового сигнала, mA;

К – коэффициент преобразования, который определяют по формуле

$$K = \frac{I_B - I_H}{F_B - F_H} \tag{4}$$

где $F_{\text{в}}$ – верхнее значение диапазона измерений частоты, Hz;

 $I_{\scriptscriptstyle B}$ – верхнее значение диапазона изменений выходного аналогового сигнала, mA, V.

Функцию преобразования измеряемого сигнала в выходной цифровой сигнал для ЭП8554 определяют по формуле

$$I = K_{T,T} \sqrt{\frac{1}{n} \sum_{k=0}^{n-1} i_{k}^{2}}$$
 (5)

где I — показания на мониторе ПЭВМ, A (kA), соответствующее значению входного сигнала;

 $K_{\scriptscriptstyle \rm T.T}$ – коэффициент трансформации внешнего измерительного трансформатора тока (ГОСТ 7746-2015);

i_k- мгновенное значение тока выборки k, A;

n – количество выборок за время измерения.

Функцию преобразования измеряемого сигнала в выходной цифровой сигнал для ЭП8555 определяют по формуле

$$U = K_{T.H} \sqrt{\frac{1}{n} \sum_{k=0}^{n=1} u^{2}_{k}}$$
 (6)

где U – показания на мониторе ПЭВМ, V (kV) соответствующее измеряемому значению входного сигнала;

 $K_{\text{т.н}}$ – коэффициент трансформации внешнего трансформатора напряжения (ГОСТ 1983-2015);

u_k- мгновенное значение напряжения выборки k, V;

n – количество выборок за время измерения.

Функцию преобразования измеряемого сигнала в выходной цифровой сигнал для ЭП8556 определяют по формуле

$$I = \left(\frac{I_{BX} - I_{H}}{I_{R} - I_{H}}\right) \cdot K \tag{7}$$

где I – показания на мониторе ПЭВМ, mA, A, kA, и т.д, соответствующее измеряемому значению входного сигнала;

 $I_{\text{вх}}$ – значение входного сигнала для проверяемой точки, mA, A, mV, V;

 $I_{\scriptscriptstyle H}-$ нижнее значение диапазона входного сигнала, mA, A, mV, V;

24

 $I_{\scriptscriptstyle B}-$ верхнее значение диапазона входного сигнала, mA, A, mV, V;

 К – коэффициент преобразования первичного измерительного преобразователя или шунта.

Функцию преобразования измеряемого сигнала в выходной цифровой сигнал для ЭП8557 определяют по формуле

$$U = U_{\text{H3M}}.$$
 (8)

где U – показания на мониторе ПЭВМ, mV, V, kV, и т.д, соответствующее измеряемому значению входного сигнала;

 $U_{\mbox{\tiny ИЗМ}}$ — измеренное значение напряжения на входе Π .

Функция преобразования измеряемого сигнала в выходной цифровой сигнал для ЭП8528 имеет следующий вид:

$$F = F_{\text{M3M}}. \tag{9}$$

где F — показания на мониторе ПЭВМ, Hz, соответствующее измеряемому значению частоты входного сигнала;

 $F_{\mbox{\tiny ИЗМ.}}$ — измеренное значение частоты входного сигнала.

Функции преобразования измеряемого сигнала в выходной цифровой сигнал для ЭП8530 имеют следующий вид:

для трехпроводных сетей

$$P = \sqrt{3} \cdot K_{\text{\tiny T.T}} \cdot I_{\phi} \cdot K_{\text{\tiny T.H}} \cdot U_{\pi} \cdot \cos \phi \tag{10}$$

$$Q = \sqrt{3} K_{\text{\tiny T.T}} \cdot I_{\phi} \cdot K_{\text{\tiny T.H}} \cdot U_{\pi} \cdot \sin \phi$$
 (11)

для четырехпроводных сетей

$$P = 3 \cdot K_{\text{\tiny T.T}} \cdot I_{\phi} \cdot K_{\text{\tiny T.H}} \cdot U_{\phi} \cdot \cos \phi \tag{12}$$

$$Q = 3 K_{\text{\tiny T.T}} \cdot I_{\phi} \cdot K_{\text{\tiny T.H}} \cdot U_{\phi} \cdot \sin \phi$$
 (13)

где P – активная мощность ЭП, W;

Q – реактивная мощность ЭП, var;

 $K_{\text{т.т}}$ и $K_{\text{т.н}}$ – см. формулы (5) и (6);

 I_{φ} – значение силы фазного тока, A;

 U_{ϕ} – значение фазного напряжения, V;

 U_{π} – значение линейного (межфазного) напряжения, V;

 ϕ – угол сдвига между I_{φ} и U_{φ} .

1.6 Маркировка и пломбирование

1.6.1 Маркировка ЭП соответствует требованиям ТР ТС 004/2011, ТР ТС 020/2011, ГОСТ 26828-86.

На табличку ЭП нанесены:

- тип и модификация ЭП;
- товарный знак изготовителя;
- символ рода тока входного сигнала;
- диапазон измерений входного сигнала;
- коэффициенты трансформации трансформаторов тока и трансформаторов напряжения (для ЭП с RS-485),
 - номинальные значения входных сигналов;
- диапазон частоты входного сигнала для ЭП переменного тока и напряжения переменного тока;
 - диапазон изменений выходного аналогового сигнала;
- диапазон изменений сопротивления нагрузки выходного аналогового сигнала:
 - обозначение единиц измерения входного и выходного аналогового сигналов;
 - класс точности;
 - символ внимания "\(\bar{\Lambda}\)";
 - 🔲 символ оборудования, защищенного двойной или усиленной изоляцией;
- идентификационный номер: первые две цифры идентификационного номера соответствуют — последним цифрам года изготовления; четыре последние цифры — порядковый номер ЭП по системе нумерации изготовителя;
 - маркировка контактов ЭП;
 - "3 ~" символ трехфазного переменного тока (только для ЭП8530);

- параметры электрического питания: (род тока источника питания, диапазон напряжения или номинальное значение напряжения питания, номинальная частота, потребляемая мощность;

Знак утверждения типа средств измерений;

- **[**Н единый знак обращения продукции на рынке государств — членов Евразийского экономического союза (далее - единый знак обращения).

Знак утверждения типа средств измерений и единый знак обращения также нанесены на эксплуатационную документацию.

Обозначение ТУ приведено в эксплуатационной документации.

1.6.2 Для защиты от несанкционированного доступа ЭП с габаритными размерами 110х120х70 mm; 110х120х81 mm; 110х120х125 mm; 110х120х136 mm; 125х90х125 mm имеют оттиск клейма ОТК и оттиск клейма поверителя на винтах, крепящих крышку корпуса к основанию (рисунок В.1 и В.3).

ЭП с габаритными размерами 55х81х71 mm; 132х81х71 mm имеют клеймонаклейку ОТК и клеймонаклейку поверителя в местах соединения крышки и основания корпуса (рисунок В.2).

1.7 Упаковка

1.7.1 ЭП упакованы в коробку картонную упаковочную в соответствии с конструкторской документацией.

Внутренняя упаковка ЭП соответствует ВУ-7 по ГОСТ 9.014-78, вариант временной противокоррозионной защиты — ВЗ-0.

1.7.2 В качестве транспортной тары применяются ящики из древесноволокнистой плиты или гофрированного картона.

На транспортную тару нанесены манипуляционные знаки "Хрупкое. Осторожно", "Беречь от влаги", "Верх"), цифровой код и (или) буквенное обозначение материала, из которого изготавливается упаковка и «петля Мебиуса», наименование и адрес грузополучателя и пункта назначения, наименование страны-изготовителя, наименование и адрес изготовителя, грузоотправителя и пункта отправления по ГОСТ 14192-96.

- 2 Использование по назначению
- 2.1 Подготовка ЭП к использованию
- 2.1.1 Все работы по монтажу и эксплуатации должны проводиться с соблюдением ТКП 181-2009, ТКП 427-2012.
- 2.1.2 Противопожарная защита в помещениях, где эксплуатируются ЭП, должна достигаться:
 - применением автоматических установок пожарной сигнализации;
 - применением средств пожаротушения;
 - организацией своевременного оповещения и эвакуации людей.
- 2.1.3 Автоматический выключатель должен быть включен в монтаж электропроводки здания, находиться в непосредственной близости от ЭП и легкодоступен оператору, а также иметь соответствующую маркировку, как отключающее устройство для данного оборудования.
- 2.1.4 Разметка места крепления ЭП проводится в соответствии с установочными размерами, приведенными в приложении А.
 - 2.1.5 Перед установкой ЭП на объекте необходимо:
 - снять или открыть крышки, изолирующие клеммные колодки;
- установить ЭП на рабочее место так, чтобы все знаки и надписи были отчетливо видны оператору.

Приборы с габаритными размерами 110x120x70 mm или 110x120x81 mm, 110x120x125 мм; 110x120x136 мм; закрепить через отверстия в основании с помощью двух винтов М4x12, проложив под каждый винт плоскую и пружинную шайбы. В случае крепления ЭП на DIN-рейку (35 mm) предусмотрены два кронштейна, установленные на основании корпуса.

Приборы с габаритными размерами 55х81х71 mm, 132х81х71 mm, закрепить через отверстия в основании с помощью двух винтов М3х12, проложив под каждый винт плоскую и пружинную шайбы. В случае крепления ЭП на DIN-рейку (35 mm) прибор фиксируют за один край DIN-рейки, оттягивают скобу на основании ЭП и устанавливают прибор на DIN-рейку, отпускают скобу.

При установке ЭП с габаритными размерами 125х90х125 mm на щит или стену при навесном монтаже сначала необходимо отсоединить от корпуса фиксатор, закрепить его при помощи двух винтов в соответствии с рисунком А.8 (приложение А), винты не должны выступать за плоскость установки преобразователя на фиксатор, а затем на него установить ЭП.

При креплении на DIN – рейку сдвинуть фиксатор корпуса, зафиксировать корпус преобразователя на DIN – рейку и плавно нажать на фиксатор до щелчка.

- 2.1.6 Внешние присоединения следует проводить при отключенных входных сигналах в соответствии со схемами подключения (приложение Б). Для подключения внешних цепей необходимо на конце каждого подводящего провода снять изоляцию длиной 8 9 mm. При подключении многожильного провода не должно быть касания жилы частей другой полярности или доступных токопроводящих частей при сгибании провода во всех доступных направлениях без разрыва изоляции.
- 2.1.7 После выполнения внешних подключений ЭП с габаритными размерами 110x120x70 mm или 110x120x81 mm, 110x120x125 mm; 110x120x136 mm необходимо установить крышки, закрывающие клеммные колодки, защищающие от случайного прикасания к цепям с опасным напряжением. При проведении пломбирования обеспечить натяжение лески, исключающее снятие крышки без применения инструмента (см. рисунок В.1).

2.2 Использование ЭП

2.2.1 Персонал, допущенный к работе с ЭП, должен иметь допуск к работе с электрическими установками напряжением до 1000 V и знать ЭП в объеме настоящего РЭ.

2.2.2 ЗАПРЕЩАЕТСЯ:

- ЭКСПЛУАТИРОВАТЬ ЭП СО СНЯТОЙ КРЫШКОЙ КЛЕММНОЙ КОЛОДКИ. ПЛОМБА И КРЫШКА КЛЕММНОЙ КОЛОДКИ ДОЛЖНЫ СНИМАТЬСЯ ТОЛЬКО ПОСЛЕ ПРОВЕДЕНИЯ ИНСТРУКТАЖА ПО ЭЛЕКТРОБЕЗОПАСНОСТИ И ВЫДАЧИ ПИСЬМЕННОГО РАЗРЕШЕНИЯ НА ПРОВЕДЕНИЕ РЕГЛАМЕНТНЫХ ИЛИ ДРУГИХ ВИДОВ РАБОТ;
- ПРОВОДИТЬ ВНЕШНИЕ ПОДКЛЮЧЕНИЯ НЕ ОТКЛЮЧИВ ВХОДНОЙ СИГНАЛ;

- ЭКСПЛУАТИРОВАТЬ ЭП ПРИ ОБРЫВАХ ПРОВОДОВ ВНЕШНИХ ПРИСОЕДИНЕНИЙ.
- В СЛУЧАЕ НАРУШЕНИЯ ПРАВИЛ ЭКСПЛУАТАЦИИ ЭП, МОЖЕТ УХУДШАТЬСЯ ЗАЩИТА, ПРИМЕНЯЕМАЯ В ЭП.
- 2.2.3 Подключить ЭП в соответствии со схемами приложения Б. Загрузить в ПЭВМ программу Contrl. Программа представлена на сайте www.electropribor.com. или по запросу высылается на электронную почту заказчика. Подать входной сигнал.

На мониторе ПЭВМ должны появиться значения измеренных входных сигналов в единицах измерения с учетом коэффициентов трансформации или коэффициентов преобразования. На аналоговых выходах должны появиться значения выходного аналогового сигнала соответствующие входному сигналу.

3 Поверка ЭП

Поверка ЭП проводится в соответствии с документом МРБ МП.3215 - 2022 "Преобразователи измерительные ЭП. Методика поверки".

Межповерочный интервал 12 месяцев.

- 4 Гарантии изготовителя
- 4.1 Изготовитель гарантирует соответствие ЭП требованиям технических условий ТУ ВУ 300080696.850-2022 и настоящего РЭ при соблюдении условий эксплуатации, транспортирования и хранения.
- 4.2 Гарантийный срок эксплуатации 36 месяцев со дня ввода ЭП в эксплуатацию.

Гарантийный срок хранения – 6 месяцев с момента изготовления ЭП.

4.3 По вопросам гарантийного обслуживания и ремонта обращаться к изготовителю по адресу: Республика Беларусь, 210001, г. Витебск, ул. Зеньковой, д.1, к.206. ООО "МНПП "Электроприбор", тел./факс +375-212-672-816, тел. +375-212-674-624, тел. +375-212-674-715; electropribor@mail.ru; www.electropribor.com.

Изготовитель не осуществляет гарантийное обслуживание при нарушении сохранности клейм ОТК и знака поверки.

Сервисное обслуживание в послегарантийный период изготовитель осуществляет по отдельному договору.

5 Хранение

5.1 Хранение ЭП на складах должно производиться на стеллажах в упаковке изготовителя при температуре окружающего воздуха от 5 °C до 40 °C и относительной влажности воздуха не более 80 % при температуре 25 °C.

В помещениях для хранения не должно быть пыли, а также газов и паров, вызывающих коррозию.

5.2 Помещения для хранения ЭП должны быть оборудованы автоматическими установками пожарной сигнализации и средствами пожаротушения.

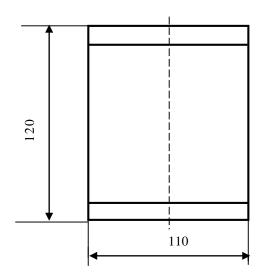
6 Транспортирование

6.1 Транспортирование ЭП может осуществляться закрытым железнодорожным и автомобильным транспортом, а также в отапливаемых герметизированных отсеках самолетов в соответствии с действующими правилами перевозки грузов, на соответствующем виде транспорта.

При упаковывании ЭП в ящики масса брутто грузового места при пересылке железнодорожным и автомобильным транспортом не более 50 kg, при пересылке почтой не более 20 kg.

Габаритные размеры грузового места (длина, ширина, высота) при упаковывании в ящики должны быть не более:

- из древесноволокнистой плиты $750 \times 460 \times 346$ mm;
- из гофрированного картона 675×435×315 mm.
- 6.2 Транспортирование ЭП должно производиться в упаковке изготовителя при температуре окружающего воздуха от минус 50 °C до плюс 50 °C и относительной влажности до (95 ± 3) % при температуре 35 °C.
- 6.3 При необходимости особых условий транспортирования это должно быть оговорено специально в договоре на поставку.


6.4 При погрузке, разгрузке и транспортировании необходимо руководствоваться требованиями, обусловленными манипуляционными знаками "Верх", "Хрупкое. Осторожно", "Беречь от влаги" по ГОСТ 14192-96, нанесенными на транспортную тару.

7 Утилизация

- 7.1 Утилизация ЭП осуществляется по утвержденным у потребителя нормативным правовым актам.
- 7.2 ЭП не содержат веществ и компонентов, вредно влияющих на окружающую среду и здоровье человека, поэтому особых мер по защите при утилизации не требуется.

Приложение A (обязательное)

Габаритные и установочные размеры ЭП

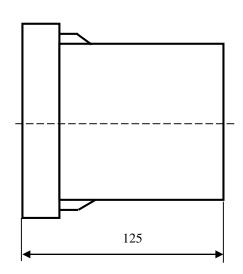


Рисунок А.1 – Габаритные размеры ЭП8554 с входными сигналами до 5 A, ЭП8555, ЭП8556, ЭП8557, ЭП8530, ЭП8528

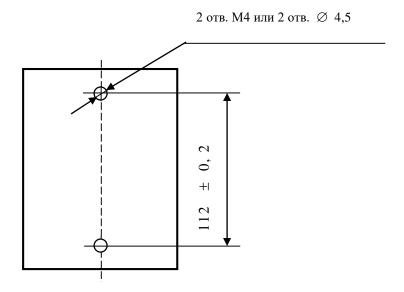
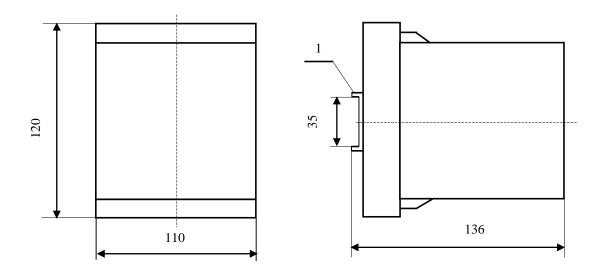



Рисунок А.2 – Установочные размеры ЭП8554 с входными сигналами до 5 А, ЭП8555, ЭП8556, ЭП8557, ЭП8530, ЭП8528

1 – два кронштейна для крепления ЭП на DIN-рейку 35 mm

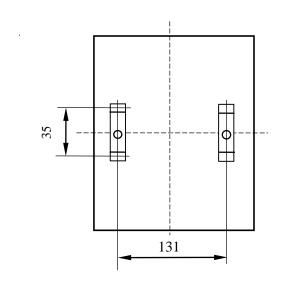
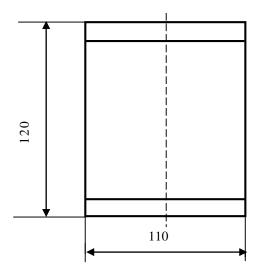



Рисунок А.3 – Габаритные и установочные размеры ЭП8554 с входными сигналами до 5 A, ЭП8555, ЭП8556, ЭП8557, ЭП8530, ЭП8528 при креплении на DIN-рейку 35 mm

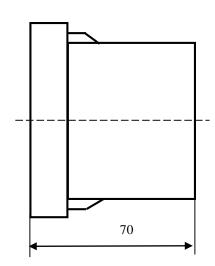


Рисунок А.4 – Габаритные размеры ЭП8554 с входными сигналами до 5 А, ЭП8555, ЭП8528, ЭП8542, ЭП8543

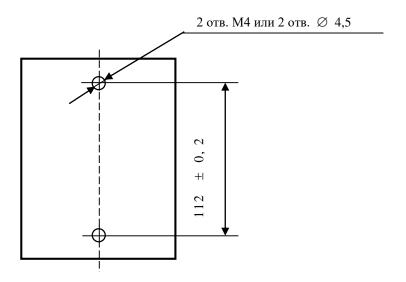
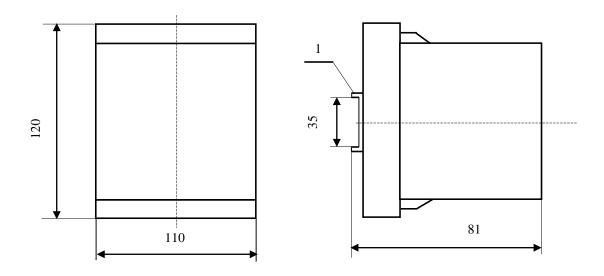



Рисунок А.5 – Установочные размеры ЭП8554 с входными сигналами до 5 A, ЭП8555, ЭП8528, ЭП8542, ЭП8543

1 – два кронштейна для крепления ЭП на DIN-рейку 35 mm

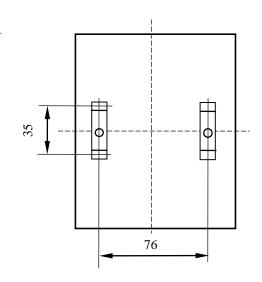


Рисунок А.6 – Габаритные и установочные размеры ЭП85554 с входными сигналами до 5 A, ЭП8555, ЭП8528, ЭП8542, ЭП8543 при креплении на DIN-рейку 35 mm

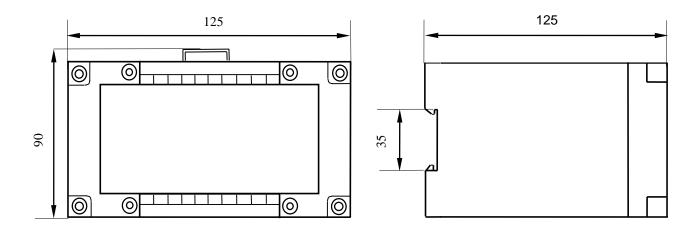


Рисунок А.7 – Габаритные размеры ЭП8554 с входными сигналами до 5 А, ЭП8555, ЭП8530, ЭП8528

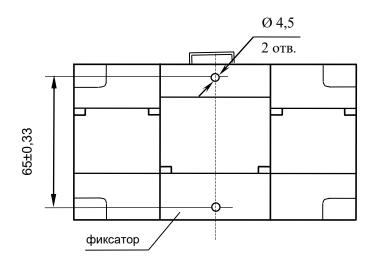


Рисунок А.8 – Установочные размеры ЭП8554 с входными сигналами до 5 А, ЭП8555, ЭП8530, ЭП8528

Kopnyc 23–101 SANHE

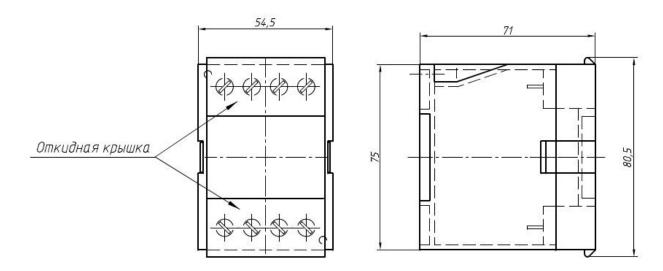


Рисунок А.9 – Габаритные размеры ЭП8554 с входными сигналами до 5 А, ЭП8555, ЭП8528, ЭП8542, ЭП8543

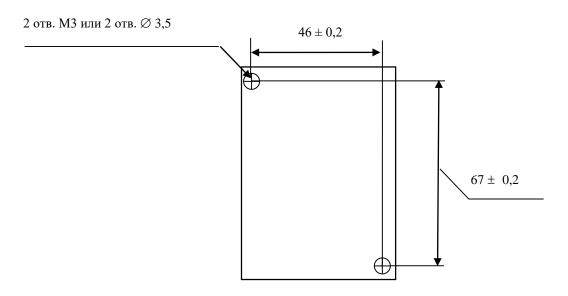


Рисунок А.10 – Установочные размеры ЭП8554 с входными сигналами до 5 А, ЭП8555, ЭП8528, ЭП8542, ЭП8543

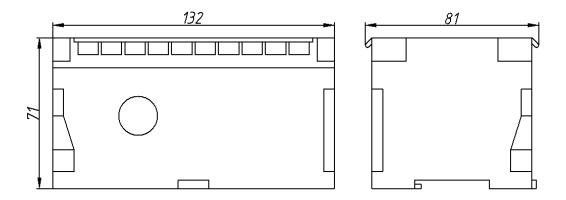
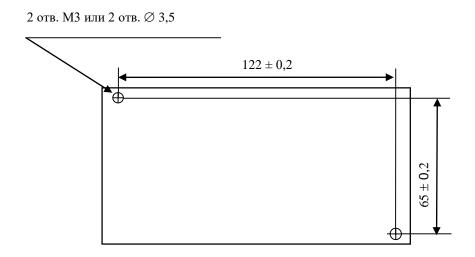
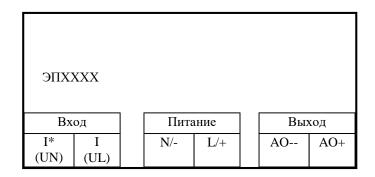


Рисунок А.11 – Габаритные размеры ЭП8554 с входными сигналами свыше 5 А




Рисунок А.12 – Установочные размеры ЭП8554 с входными сигналами свыше 5А

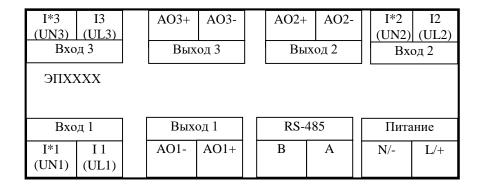
Приложение Б (обязательное) Схемы электрические подключения ЭП

ЭПХ	xxx		
Bx	од	Вых	код
I* (UN)	I (UL)	AO-	AO+

Примечание - Обозначения в скобках указаны для подключения ЭП8543.

Рисунок Б.1 – Схемы электрическая подключения ЭП8542, ЭП8543 в корпусе с габаритными размерами 55х81х71 mm, 110х120х70 mm или 110х120х81mm (с креплением на DIN – рейку)

Примечание - Обозначения в скобках указаны для подключения ЭП8555 и ЭП8528.


Рисунок Б.2 – Схемы электрическая подключения одноканальных ЭП8554 с номинальными входными сигналами до 5 A, ЭП8555, ЭП8528 в корпусе с габаритными размерами 110x120x70 mm или 110x120x81mm (с креплением на DIN – рейку)

AO1-	AO1+		AO2-	AO2+		AO3-	A	O3+		В	A	
Вых	од 1	1 Выход 2		од 2		Вы	Выход 3			RS-485		
ЭПХХХХ												
Вход 1 Вход 2 Вход 3								Пита	ние			
I*1 (UN1)	I1 (UL1)		I*2 (UN2)	I2 (UL2)		I*3 (UN3)	I3 (UI			N/-	L/+	

Примечания

- 1 На данном рисунке представлена схема электрическая подключения трехканальных ЭП8554, ЭП8555. Количество каналов изготавливается по заказу.
 - 2 Обозначения в скобках указаны для подключения ЭП8555.

Рисунок Б.3 – Схемы электрическая подключения трехканальных ЭП8554 с номинальными входными сигналами до 5 A, ЭП8555, в корпусе с габаритными размерами 110x120x125 mm или 110x120x136 mm (с креплением на DIN – рейку)

Примечания

- 1 На данном рисунке представлена схема электрическая подключения трехканальных ЭП8554, ЭП8555. Количество каналов изготавливается по заказу.
 - 2 Обозначения в скобках указаны для подключения ЭП8555.

Рисунок Б.4 – Схемы электрическая подключения трехканальных ЭП8554 с номинальными входными сигналами до 5 A и ЭП8555 в корпусе с габаритными размерами 125х90х125 mm

AO-	AO+	В	A
Вых	код	RS	-485
ЭПХХ	XXX		·
Bx	од	Пита	ние
I*	I	N/-	L/+
(UN)	(UL)		

Примечания

- 1 На данном рисунке представлена схема электрическая подключения трехканальных ЭП8554, ЭП8555. Количество каналов изготавливается по заказу.
 - 2 Обозначения в скобках указаны для подключения ЭП8555.

Рисунок Б.5 – Схемы электрическая подключения одноканальных ЭП8554 с номинальными входными сигналами до 5 A и ЭП8555 в корпусе с габаритными размерами 55х81х71 mm

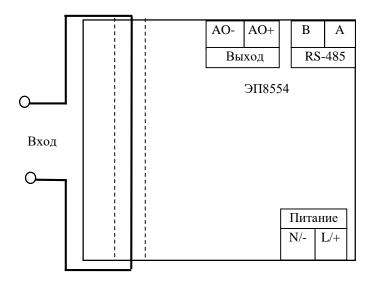
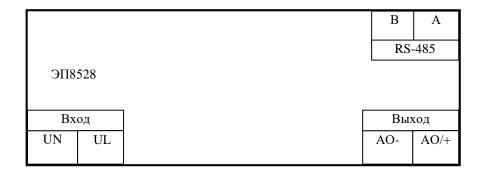



Рисунок Б.6 – Схемы электрическая подключения одноканальных ЭП8554 с номинальными входными сигналами свыше 5 А в корпусе с габаритными размерами 132х81х71 mm

Примечание - На данном рисунке представлена схема электрическая подключения ЭП8528 с питанием от измерительной цепи.

Рисунок Б.7 – Схема электрическая подключения ЭП8528 в корпусе с габаритными размерами 110x120x125 mm или 110x120x136 mm (с креплением на DIN – рейку) или 125x90x125 mm

AO1-	AO1+		AO2-	AO2+	AO3-	AO3+	В	A	
Вых	од 1		Вых	од 2	Вых	од 3	RS-485		
ЭП8:	528								
Bx	од					Пита	ние		
UN	UL						N/-	L/+	

Примечание - На данном рисунке представлена схема электрическая подключения ЭП8528 с тремя выходами Количество выходов изготавливается по заказу и с дополнительным источником питания.

Рисунок Б.8 – Схема электрическая подключения ЭП8528 в корпусе с габаритными размерами 110x120x125 mm или 110x120x136 mm (с креплением на DIN – рейку) или 125x90x125 mm

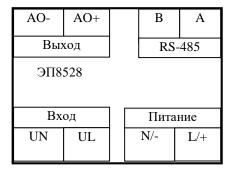


Рисунок Б.9 – Схемы электрическая подключения ЭП8528 в корпусе с габаритными размерами 55х81х71 mm

I2- (U2-) Bxc	I+ (U+) д 2		B RS-4	A 485	АО2- Вых	AO2+ од 2
ЭПХ	XXX					
Bxc	Вход 1		Пита	ние	Вых	од 1
I1- (U1-)	I1+ (U1+)		N/-	L/+	AO1-	AO1+

Примечания

- 1 На данном рисунке представлена схема электрическая подключения двухканальных ЭП8556, ЭП8557. Количество каналов изготавливается по заказу.
 - 2 Обозначения в скобках указаны для подключения ЭП8557.

Рисунок Б.10 – Схемы электрическая подключения двухканальных ЭП8556 и ЭП8557 в корпусе с габаритными размерами 110х120х125 mm или 110х120х136 mm (с креплением на DIN – рейку)

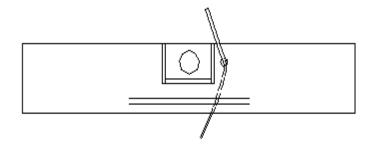
	U _A (U _A)	U _B (U _B)	U _C (Uc)	U _N	-(+)	+(-)	В	A		
		Bxo	дU		Выход Q RS-485			-485		
	ЭП8530									
Вход І Выход Р Питан								ание		
*I _A (*I _A)	I _A (I _A)	*I _B	I_{B}	*I _C (*I _C)	I _C (I _C)	-(+)	+(-)	N/-	L/+	

Примечание - Обозначения в скобках указаны для подключения ЭП8530 в трехпроводных сетях.

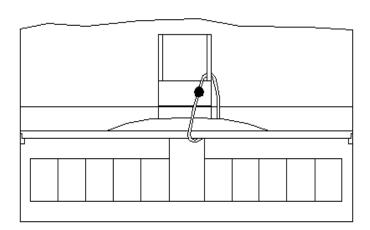
Рисунок Б.11 – Схемы электрическая подключения ЭП8530 в корпусе с габаритными размерами 110х120х125 mm или 110х120х136mm (с креплением на DIN – рейку)

A	В		-(+)	+(-)	-(+)	+(-)		L/+	N/-
RS-4	485		Вых	од Р	Вых	од Q		Пит	ание
	ЭП8530								
Вход И Вход І									
U _A (U _A)	U _B	U _C (U _C)	U _N (U _B)	*I _A (*I _A)	I _A (I _A)	$*I_B$	I_B	*I _C (*I _C)	I _C (I _C)

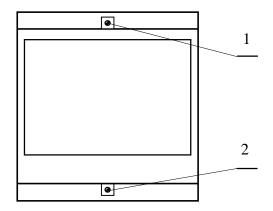
Примечание - Обозначения в скобках указаны для подключения ЭП8530 в трехпроводных сетях.


Рисунок Б.12 – Схемы электрическая подключения ЭП8530 в корпусе с габаритными размерами 125х90х125 mm

Приложение В


(обязательное)

Пломбирование ЭП


1 Пропустить леску в отверстие крышки клеммной колодки

- 2 Вставить и защелкнуть крышку клеммной колодки
- 3 Пропустить леску в отверстие верхней крышки прибора

- 4 Закрепить леску узлом с натяжением, исключающим снятие крышки
- 5 Опломбировать.

- 1 место для нанесения оттиска клейма ОТК;
- 2 место для нанесения оттиска клейма Знака поверки.

Рисунок В.1 – Схема пломбировки от несанкционированного доступа на ЭП с габаритными размерами корпуса 110х120х70 mm или 110х120х81 mm, 110х120х125 mm или 110х120х136 mm

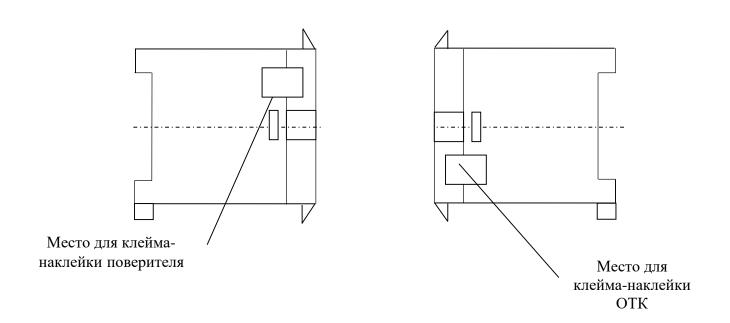


Рисунок В.2 - Схема пломбировки от несанкционированного доступа на ЭП в корпусе с габаритными размерами 55х81х71 mm и 132х81х71 mm (вид сбоку).

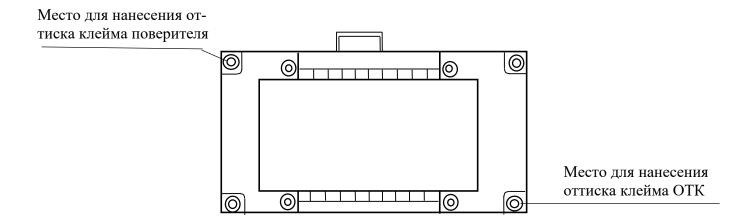


Рисунок В.3 - Схема пломбировки от несанкционированного доступа на ЭП в корпусе с габаритными размерами 125х90х125 mm